Output feedback sliding-mode control with generalized sliding surface for civil structures under earthquake excitation

Author(s):  
E. E. Matheu ◽  
M. P. Singh ◽  
C. Beattie
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuan-Wei Tseng ◽  
Yu-Ning Wang

This paper investigates the novel sliding mode control design with state derivative output feedback in nontraditional reciprocal state space (RSS) form. The concepts and the need of RSS form are comprehensively reviewed and explained. Novel switching function and approaching condition based on the derivative of sliding surface are introduced. In addition, a sufficient condition for finding the upper bound of system uncertainty to guarantee the stability in sliding surface is developed for robustness analysis. A compact sliding mode controller utilizing only state derivative related output feedback is proposed for systems with system uncertainty, matched input uncertainty, and matched external disturbance. Simulation results for a circuit system successfully verify the validities of the proposed algorithms. Our derivation is basically parallel to that for systems in standard state space form. Therefore, those who understand the concepts of sliding mode control can easily apply our method to handle more control problems without being involved in complex mathematics.


Author(s):  
Jiehua Feng ◽  
Dongya Zhao ◽  
Xing-Gang Yan ◽  
Sarah K Spurgeon

In this paper, a class of uncertain linear systems with unmatched disturbances is considered, where the nominal system representation is allowed to be non-minimum phase. A sliding surface is designed which is dependent on the system output, observed state, and estimated uncertain parameters. A linear coordinate transformation is introduced so that the stability analysis of the reduced-order sliding mode dynamics can be conveniently performed. A robust output feedback sliding mode control (OFSMC) is then designed to drive the considered system state to reach the sliding surface in finite time and maintain a sliding motion thereafter. A simulation example for a high incidence research model (HIRM) aircraft is used to demonstrate the effectiveness of the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Sign in / Sign up

Export Citation Format

Share Document